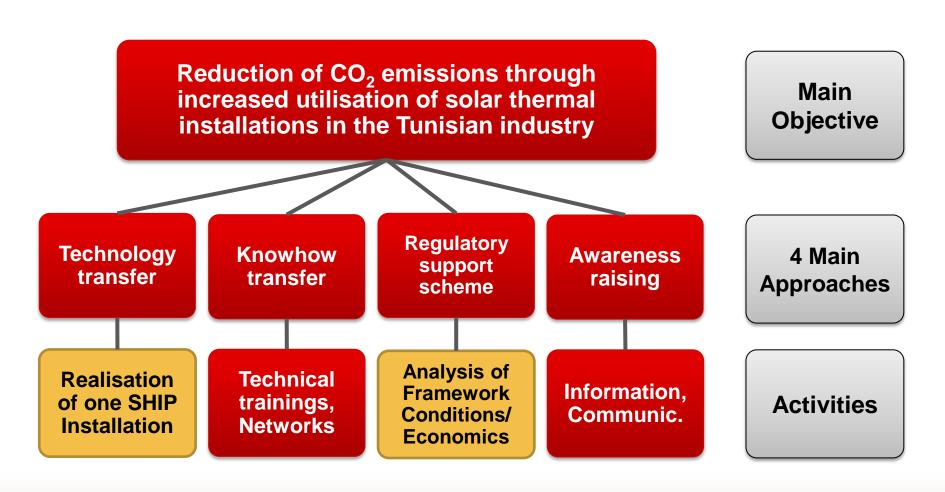


Dissemination of Innovative Solar Thermal Applications in the Tunisian Industry (DASTII)

Results of Prefeasibility Studies for Solar Heat in Industrial Processes (SHIP) in Tunisia



Kick-off Opportunity Study

26.09.2014

The DASTII Project

SHIP Installation Project

- Realisation of a SHIP installation in a Tunisian industrial company
- Objectif: Fuel Savings equivalent to 250 t CO2 / year
- Utilisation of a concentrating collector technology at medium temperature level (> 150°C)
- Potential branches: Food, Beverage, Textile, Chemics, others

Selection process of industry partner for SHIP Project

1. Preselection	 Preselection of 20 industrial companies based on prior analysis (Potential Study) Representation of most relevant branches (Food, Textile, Chemical, Brick)
2. Site Visits	 Verification of site conditions, level of interest Collection of technical data via questionnaires → Selection of 5 most favorable candidates
3. Energy Audits	 Thermal energy measurements on site Set-up of daily and annual energy demand profile
4. Prefeasibility Study	Techno-economic assessment of SPH integration on 5 sites
5. Feasibility Study	Selection of industry partner through detailed study

Prefeasibility Study - Assumptions

- → Solar plant must save gas/ fuel oil equivalent to 250 t CO2/ year
- → Payback Period for company/client: 5 years
- → Use of a concentrating collector technology

Technical Assumptions	
Collector	Fresnel
Optical efficiency	0,635
Degradation (%)	0,5
Life Time (a)	20
O&M costs/ Inv. Costs (%)	1
Specific Costs (€/m²)	550

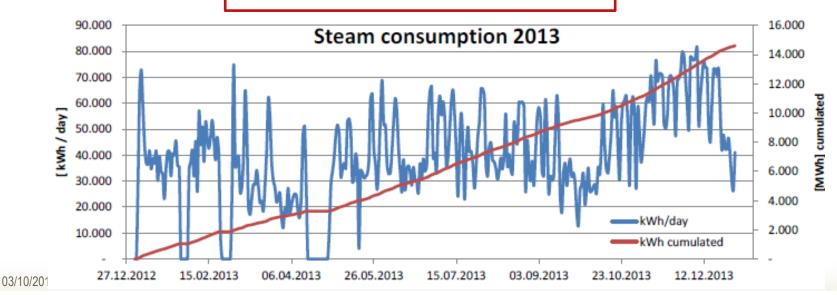
Energy Prices	
Nat. Gas Cost [€ct/kWh]	1,76*
Fuel Oil Cost [€ct/kWh]	2,5*
Energy Price Increase	
per year [%/a]	10%

Financial Assumptions	
Equity Share	80%
Debt Share	20%
Cost of Equity	14%
Cost of Debt	8%

Solar Irradiation	
DNI (kWh/m²/a)	1850 (North)
DINI (KVVII/III-/a)	2000 (Center)

→ 17 ct/kWh after 20 years

^{*} Current Tunisian energy prices incl.VAT (09/2014) plus 10% (assumed energy price increase in 2015)


1. Food Production Company

Sector: Food Industry
Location: North Tunisia
Heat source: Fuel Oil

Heat supply: Steam at 180°C

Processes: Drying (110°C), Sterilisation (130°C)

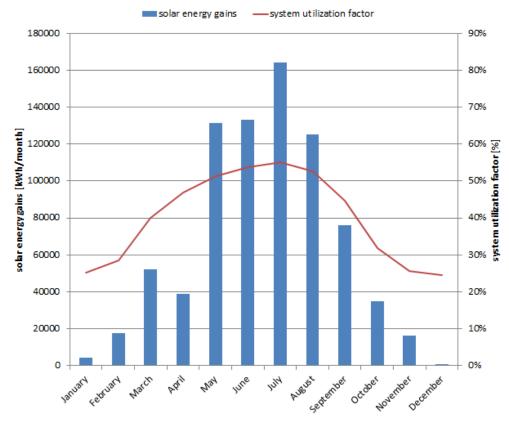
Energy Profile: 24h/d, 7 d/w., 339 d/a Energy demand: High, fairly constant

1. Food company - Results

For CO2 reduction of 250 t/a:

Solar Field Size: 1.250 m²

System Utilisation: 34%


Solar Fraction: 5%

Total Investment: 740.000 €

Payback Period: 18 years

Required Subsidy (PBP = 5 y): 88%

Solar Energy Gains & System Utilization Factor

2. Textile Company

Sector: Textile industry Location: North Tunisia

Heating source: Natural Gas Heat supply: Steam at 165°C Processes: Washing (90°C), Whitening (90°C), Dyeing (90°C)

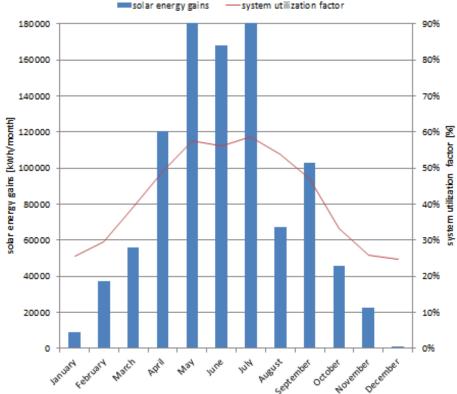
Energy Profile: 16h, 6 d/w., 283 d/a Energy demand: Medium, fluctuating

2. Textile company - Results

For CO2 reduction of 250 t/a:

Solar Field Size: 1.850 m²

System Utilisation: 29%


Solar Fraction: 10%

Total Investment: 1.070.000 €

Payback Period: 22 years

Required Subsidy (PBP = 5 y): 92%

Solar Energy Gains & System Utilization Factor

3. Tobacco Company

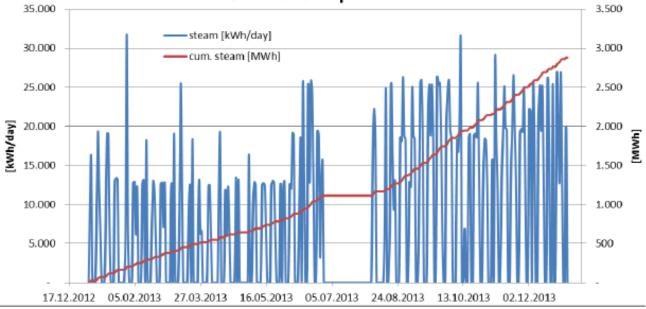
Sector: Tobacco production

Location: Central Tunisia

Heating source: Heavy Fuel

Heat supply: Steam at 180°C

Processes: Humidification (90°C),


Drying (90°C)

Production Profile: 10h, 5 d/w., 178 d/a

Daily profile: 5 a.m. – 14:30 p.m.

Energy demand: Low, highly fluctuating

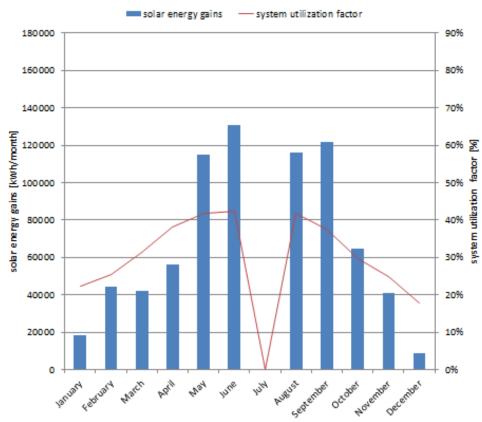
Steam consumption 2013

3. Tobacco company - Results

For CO2 reduction of 250 t/a:

Solar Field Size: 3.150 m²

System Utilisation: 12%


Solar Fraction: 25%

Total Investment: 1.780.000 €

Payback Period: 27 years

Required Subsidy (PBP = 5 y): 94%

Solar Energy Gains & System Utilization Factor

Expected results of the opportunity study

- Details on current SHIP system costs and cost distribution
- Influence of collector technology, integration method, application (energy profile), storage on economics → Simulation
- Identification of potential market niches
- Definition of minimum framework conditions for market development

Frank Münk

Project Manager DASTII

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Tunis, Tunisia

frank.muenk@giz.de

www.giz.de www.dastii.com